Duality and optimality in multistagestochastic programming
نویسنده
چکیده
A model of multistage stochastic programming over a scenario tree is developed in which the evolution of information states, as represented by the nodes of a scenario tree, is supplemented by a dynamical system of state vectors controlled by recourse decisions. A dual problem is obtained in which multipliers associated with the primal dynamics are price vectors that are propagated backward in time through a dual dynamical system involving conditional expectation. A format of Fenchel duality is employed in order to have immediate specialization not only to linear programming but extended linear-quadratic programming. The resulting optimality conditions support schemes of decomposition in which a separate optimization problem is solved at each node of the scenario tree. * This work was supported in part by the National Science Foundation under grant DMS–9500957.
منابع مشابه
Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملSufficiency and duality for a nonsmooth vector optimization problem with generalized $alpha$-$d_{I}$-type-I univexity over cones
In this paper, using Clarke’s generalized directional derivative and dI-invexity we introduce new concepts of nonsmooth K-α-dI-invex and generalized type I univex functions over cones for a nonsmooth vector optimization problem with cone constraints. We obtain some sufficient optimality conditions and Mond-Weir type duality results under the foresaid generalized invexity and type I cone-univexi...
متن کاملSome Duality Results in Grey Linear Programming Problem
Different approaches are presented to address the uncertainty of data and appropriate description of uncertain parameters of linear programming models. One of them is to use the grey systems theory in modeling such problem. Especially, recently, grey linear programming has attracted many researchers. In this paper, a kind of linear programming with grey coefficients is discussed. Introducing th...
متن کاملOptimality Conditions and Duality in Nondifferentiable Minimax Fractional Programming with Generalized Convexity1
We establish sufficient optimality conditions for a class of nondifferentiable minimax fractional programming problems involving (F, α, ρ, d)convexity. Subsequently, we apply the optimality conditions to formulate two types of dual problems and prove appropriate duality theorems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals OR
دوره 85 شماره
صفحات -
تاریخ انتشار 1999